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1 Introduction

Soon after the construction of the maximally supersymmetric D = 11 gravity theory [6], it

was realized that this theory exhibits an exceptional hidden symmetry E7(7) upon dimen-

sional reduction from D = 11 to d = 4 [7]. Much work has been devoted to reveal the origin

of this hidden symmetry, which has e.g. led to the E10(10)- and E11(11)-conjectures [9, 26]

for symmetries of M-theory. The dynamical origin of E7(7) has remained mysterious how-

ever. Another source of interest for E7(7) is its possible link to the improved ultraviolet

properties of N = 8 supergravity in d = 4 [1, 2, 11, 12, 19].

In this article, the conventional logic is reversed: Instead of starting with a diffeomor-

phism covariant theory in eleven dimensions exhibiting a hidden E7(7)-symmetry upon a

reduction to d = 4, the starting point will be a manifestly E7(7)-invariant theory in sixty

dimensions with a hidden diffeomorphism symmetry in a reduction to D = 11. This 4+56

dimensional setting is already hinted at by the local SO(3, 1) × SU(8)/Z2 covariance of

D = 11 supergravity [28] and by BPS-extended supergravity [29].

The dynamics will be fixed by group theoretical requirements. The generalized coset

dynamics à la West [25] will provide a general multi-parameter class of Lagrangians with

manifest E7(7)-invariance in 4 + 56 dimensions. Then, we will uniquely fix a specific La-

grangian within this E7(7)-invariant class by requiring the symmetry group Gl(7) ⊂ E7(7)

to be enlarged to Diff(7) in a truncation to 4 + 7 dimensions. The resulting theory will be

shown to completely agree with the truncation of the bosonic part of D = 11 supergravity

to seven dimensions, if Cremmer & Julia’s identification of the E7(7)/(SU(8)/Z2) coset [7]

with fields of supergravity is used and if we restrict supergravity to these degrees of freedom.

A similar analysis can be performed for fermions. In a first step, the introduction of

an SU(8) covariant derivation δ with a 32 dimensional Graßmann valued parameter ǫ on

the bosonic degrees of freedom in 4 + 56 dimensions leads to Majorana fermions χ. As for

the bosonic Lagrangian, the general SU(8) covariant derivation δ of the fermions χ is not

unique a priori. Requiring Diff(7) to appear as a hidden symmetry completely fixes this

arbitrariness however. Using Cremmer & Julia’s redefinition of the gravitino ψ [7], these

transformations are then found to agree with the supersymmetry transformations ofD = 11

supergravity subject to the same restrictions as used for the bosonic sector. Furthermore,

the fermionic dynamics of D = 11 supergravity can also be reproduced in the same way.

The geometrical setting for this generalized coset dynamics consists of a vector bundle

E with a 56 dimensional fibre Ex over a four-dimensional manifold with structure group

E7(7). Following de Wit & Nicolai [29], it will be referred to as “exceptional geometry”.

Hence, it is obvious that the comparison with D = 11 supergravity in the truncation to

seven dimensions is the complicated part. The way how to compare the dynamics in the

four base dimensions of exceptional geometry to supergravity is uniquely determined. It

will be discussed elsewhere. The results of the present article hence provide only a partial

proof of the statement that all solutions of D = 11 supergravity form the subset of solutions

of sixty dimensional exceptional geometry with 49 independent Killing vectors.

The motivation for this construction is the following: The supersymmetry of 60 di-

mensional exceptional geometry would immediately provide a Lagrangian of N = 8 d = 4
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supergravity with manifest off-shell E7(7)-invariance by dimensional reduction. It would

also be interesting to further investigate the relation to Hull’s and Waldram’s constructions

with vector bundles of E7(7)-structure [15, 24].

The article is organized as follows: We will start with a brief introduction to the

hidden symmetries of maximal supergravity in section 2 that serve as a motivation for the

4 + 56 dimensional setting as explained in section 3. In section 4, the generalized coset

dynamics is introduced and a symmetry enlargement is illustrated by the familiar example

of the Einstein-Hilbert action. We will focus on the E7(7)/(SU(8)/Z2) coset in section 5

and compare the bosonic Lagrangian with supergravity before discussing supersymmetry

transformations and the fermionic dynamics in section 6. Finally, the generalized coset

dynamics will be related to the sixty dimensional exceptional geometry in section 7.

2 Supergravity in eleven dimensions

2.1 Conventions

Following Nahm’s result [22], N = 8 supergravity is referred to as maximal supergravity

in d = 4. This theory was first constructed from a Kaluza-Klein reduction of Cremmer,

Julia & Scherk’s supergravity in D = 11 [6], which is provided by the following action with

α̃i = 0, . . . , 10

S =

∫

M11

d11xdet(E)

(

1

4
R̃11 −

1

2
ψ̄α̃1 Γ̃

α̃1...α̃3∇α̃2ψα̃3 −
1

48
Fα̃1...α̃4F

α̃1...α̃4

− 1

96

(

ψ̄α̃5 Γ̃
α̃1...α̃6ψα̃6 + 12ψ̄α̃1 Γ̃α̃2α̃3ψα̃4

)

Fα̃1...α̃4

+
2

124
εα̃1...α̃11Fα̃1...α̃4Fα̃5...α̃8Aα̃9...α̃11

)

. (2.1)

To simplify the notation, we have absorbed the gravitational constant κ in the fields as

suggested in [7] and neglected both quartic terms in fermions and the quadratic ones that

arise from the non-vanishing torsion of supergravity throughout the paper.

The metric degrees of freedom are encoded in the repère mobile or vielbein Eµ̃
α̃ by the

standard identification

g = gµ̃ν̃ dx
µ̃ ⊗ dxν̃

gµ̃ν̃ =: Eµ̃
α̃Eν̃

β̃η
α̃β̃

(2.2)

with the signature (−,+, . . . ,+) of η. This is always possible given a manifold M11 having

vanishing first and second Stiefel-Whitney class and the metric g being non-degenerate,

what we henceforth assume. The definition of the vielbein (2.2) introduces an additional

symmetry: a local Lorentz symmetry O ∈ SO(10, 1)1

E′
µ̃

α̃
= Eµ̃

β̃O
β̃

α̃. (2.3)

1Groups will be denoted by capital letters and their associated algebras by gothic ones.

– 3 –



J
H
E
P
0
3
(
2
0
0
9
)
1
3
5

The local Lorentz (“flat”) indices α̃i = 0, . . . , 10 in the action S (2.1) are hence raised and

lowered with the flat Minkowski metric η, because we have transformed the three-form

potential A, its corresponding field strength

Fα̃1...α̃4 := 4∇[α̃1
Aα̃2...α̃4] (2.4)

and the gravitino ψ into the vielbein frame by contraction with the inverse vielbein Eα̃
µ.2

Since torsion terms have been neglected, the covariant derivative ∇ in the action (2.1) is

the standard Levi-Civita connection in the vielbein frame, sometimes referred to as spin

connection.3 The Ricci scalar R̃11 is composed of the vielbein E by the following formulæ:

R̃11 := ηα̃β̃
(

2∂[α̃ωγ̃]β̃
γ̃ + 2ω[α̃γ̃]

δ̃ω
δ̃β̃

γ̃ + 2ω[α̃|β̃|
δ̃ω

γ̃]δ̃
γ̃
)

(2.5a)

ω
α̃β̃γ̃

:= (Qα̃)
β̃γ̃

− 2(P[β̃)γ̃]α̃ (2.5b)

(Qα̃)
β̃γ̃

:= η
δ̃[γ̃Eβ̃]

µ∂α̃Eµ
δ̃ (2.5c)

(Pα̃)β̃γ̃ := ηδ̃(γ̃Eβ̃)
µ∂α̃Eµ

δ̃. (2.5d)

Furthermore, we use the real matrix representation Γ̃α̃ ∈ R
32×32 of the Clifford algebra

{Γ̃α̃, Γ̃β̃} = 2ηα̃β̃ with normalization Γ̃α̃1...α̃11 = εα̃1...α̃111l32 and ε0 1 2 3 4 5 6 7 8 9 10 = 1. We

have suppressed the spinor indices of ψ and Γ̃ and introduced the standard abbreviation

for the real Majorana conjugate spinor

ψ̄α̃ :=
(

ψα̃
)t

Γ0.

In this paper, we will discuss theories on the level of the Lagrangian. The only equation

of motion that will be necessary is the one of the four-form field strength F , which, to zeroth

order in fermions, reads

∇α̃0F
α̃0...α̃3 = − 1

242
εα̃1...α̃11Fα̃4...α̃7Fα̃8...α̃11 .

In a first order formalism, it is equivalent [25] to the two equations

F α̃1...α̃4 =:
1

7!
εα̃1...α̃11 F̃α̃4...α̃11 (2.6a)

F̃α̃1...α̃7 = 7
(

∇[α̃1
Ãα̃2...α̃7] + 5A[α̃1...α̃3

Fα̃4...α̃7]

)

, (2.6b)

with a dual six-form potential Ã and its corresponding seven-form field strength F̃ . The

set of solutions of the equations of motion is invariant under the following supersymmetry

transformations that are modulo non-linear terms in fermions:

Eα̃
µ̃δεEµ̃

β̃ = ε̄Γ̃β̃ψα̃ (2.7a)

2Following the standard convention, we denote the inverse vielbein by a simple change of the indices

δβ̃
α̃ = Eµ̃

β̃Eα̃
µ̃ and introduce the abbreviation ∂α̃ := Eα̃

µ ∂
∂xµ .

3We emphasize that the “covariant derivative” D[α̃2
ψα̃3] in [6, 10] only differs from ∇[α̃2

ψα̃3] by the

torsion tensor that is not discussed in this article.
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δεψβ̃ = ∇β̃ε+
1

144

(

Γ̃α̃1...α̃4
β̃ − 8δα̃1

β̃
Γ̃α̃2...α̃4

)

εFα̃1...α̃4 (2.7b)

δεAα̃1...α̃3 = −3

2
ε̄Γ̃[α̃1α̃2

ψα̃3]. (2.7c)

All fields (E,A,ψ, ε) are manifestly real in the present conventions. We want to close this

section with the well-known fact [6] that the supersymmetry algebra only closes on-shell.

This is encoded in the following equivalence relation modulo the equations of motion:

[δε1, δε2 ] ∼ δε3 + δdiff11
+ δso(10,1)

+ δ3-form gauge.

Neither an off-shell formulation of the supersymmetry algebra acting on the fields (E,A,ψ)

nor an unconstrained superspace formulation of D = 11 supergravity has been constructed

so far.4 In particular, a combination of the so(10,1) representations (E,A,ψ) into indepen-

dent representations of some superalgebra that is a symmetry of the equations of motion

has not been achieved yet. We will not use these concepts in this article, but rather focus

on the hidden symmetries. We shall see that E7(7) suggests a complementary way to discuss

the independent degrees of freedom of supergravity.

2.2 Hidden symmetries

A Kaluza-Klein reduction5 of D = 11 supergravity on a flat spacelike hypertorus T n for

n = 1, . . . , 9 is equivalent to restricting the set of solutions to the ones with n independent,

spacelike, commuting Killing vectors. These sets of solutions are orbits of the symmetry

groups En(n) [17, 18, 23] that are called “hidden symmetries”, because their origin is

not obvious from the action of D = 11 supergravity in the form stated in (2.1). It is

remarkable that even for the reduced supergravity to four space time dimensions, it has

not been possible to construct an action with manifest E7(7)-invariance so far.

In this article, we will focus on the role of the 133 dimensional symmetry group E7(7)

with its maximal compact subgroup SU(8)/Z2 [7] in the unreduced D = 11 supergravity.

From the dynamical point of view, a very interesting result addressing this question was

established by de Wit & Nicolai in 1986:

SO(3, 1) × SU(8)/Z2 is a local symmetry of the equations of motion of D = 11

supergravity [28].

Guided by the discovery of the global E7(7) symmetry in d = 4 N = 8 supergravity [7], their

ansatz reduced the manifest local Lorentz symmetry SO(10, 1) (2.3) to SO(3, 1) × SO(7)

by fixing a particular matrix form for the vielbein:

Eµ̃
α̃ =:

(

∆− 1
2 eµ

α Bµ
a

0 em
a

)

µ̃

α̃

(2.8)

with ∆ := det (em
a) (2.9)

4Constraints are an essential ingredient in Cremmer & Ferrara’s construction [8]. Another interesting

formulation is the light-cone approach [4].
5For this article, a “Kaluza-Klein reduction” implies a truncation of the massive modes.
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and µ, α = 0, . . . , 3,

m, a = 4, . . . , 10,

µ̃, α̃ = 0, . . . , 10.

Then they combined the degrees of freedom of the vielbein and of the three-form potential

into SO(3, 1) × SU(8)/Z2 representations in such a way that both the supersymmetry

variations and the equations of motion of D = 11 supergravity exhibit manifest local

Spin(3, 1) × SU(8) covariance.6

3 Motivation from Kaluza-Klein theory

In this article, we would like to present a different interpretation of this SO(3, 1)×SU(8)/Z2

symmetry of D = 11 supergravity. This is related to the following observation in Kaluza-

Klein theory: In d + 1 dimensional pure gravity, the metric or equivalently, the vielbein

E (2.2) is the only independent field. The action is provided by the standard Einstein-

Hilbert action

SEH =

∫

Md+1

dd+1xdet(E)
1

4
R̃d+1 (3.1)

with the obvious generalization of (2.5) to the Ricci scalar R̃d+1 in d+ 1 dimensions. Sub-

stituting these explicit expressions in terms of the vielbein E produces a Lagrangian that

only contains the vielbein, its inverse, the Minkowski metric η and partial derivatives ∂
∂xm̃

with m̃ = 0, . . . , d in the coordinate induced frame. In this notation, the symmetry of the

theory under the following two transformations is obvious:

1. General coordinate transformations ϕ ∈ Diff(d+ 1) and

2. local Lorentz transformations O ∈ SO(d, 1)

that act as follows:

∂ϕm̃

∂xñ
E′

m̃
ã

= Eñ
b̃O

b̃
ã. (3.2)

The indices m̃, ñ, ã, b̃ take values in 0, . . . , d. A reduction à la Kaluza-Klein d + 1 → d

amounts to choosing one coordinate on which the field does not depend. Since the vielbein

Eµ
a is the only dynamical field in d + 1 pure gravity, we can without loss of generality

impose that it does not depend on the dth coordinate, i.e.

∂

∂xd
(Eµ

a) = 0. (3.3)

Since all coordinate indices must be contracted with partial derivatives ∂
∂xm̃ , the con-

straint (3.3) reduces the effective range of the indices in the Lagrangian to

6Due to the presence of the fermions it is necessary to pass to the covering group as usual. De Wit

& Nicolai used the same redefinition for the fermions as Cremmer & Julia in [7] that we will also use in

section 6.
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1. coordinate indices: m̃ = 0, . . . , d− 1 and

2. vielbein indices: ã = 0, . . . , d.

The symmetries that keep the reduction (3.3) invariant are

1. General coordinate transformations Diff(d) ×Gl(1) and

2. local Lorentz transformations SO(d, 1).

The important fact is that the local Lorentz transformations SO(d, 1) are not affected by

a Kaluza-Klein reduction a priori. It is possible and conventional to also reduce SO(d, 1)

to SO(d− 1, 1) by fixing a particular matrix form of the vielbein in d+ 1 dimensions simi-

larly to the reduction of SO(10, 1) to SO(3, 1)× SO(7) in (2.8), but this is not compulsory.

Hence, it is perfectly consistent to discuss a d dimensional theory with general coordinate

symmetry Diff(d) and enlarged local Lorentz symmetry SO(d, 1).

To establish the connection to D = 11 supergravity, we should recall that de Wit

& Nicolai in fact enlarged the remaining local Lorentz symmetry SO(3, 1) × SO(7) to

SO(3, 1) × SU(8)/Z2 in [28]. Hence, D = 11 supergravity can be viewed as an eleven

dimensional theory with enlarged local Lorentz-like symmetry SO(3, 1) × SU(8)/Z2. In

this article, we shall investigate the consequences of interpreting SO(3, 1) × SU(8)/Z2 as

the local Lorentz symmetry of a higher dimensional space that leads to supergravity in a

reduction to D = 11 dimensions.

Thus, we are led to the question of finding the lowest dimensional Lorentz group

SO(d− 1, 1) with the property

SO(3, 1) × SU(8)/Z2 ⊂ SO(d− 1, 1).

The answer is provided by representation theory. Due to the division by Z2, only su8-

representation vector spaces with an even number of su8 indices also are representations

of SU(8)/Z2. Furthermore, these are complex vector spaces, which leads to an additional

factor 2 for the real dimension:

d ≥ 4 + 2 ·
(

8

2

)

= 60.

This indicates that a 60-dimensional structure may be relevant for maximal supergrav-

ity. However, it is well-known that there are two severe problems with discussing a sixty

dimensional supergravity theory in the conventional setting:

1. The supersymmetry parameter ε would have to transform as a representation of

Spin(59, 1) which would lead to more than 32 supercharges in a compactification to

d = 4.

2. The minimal number of off-shell degrees of freedom of a conventional gravitational

theory in d = 60 would be 1
260(60 + 1), much more than in D = 11 supergravity.

To sum up, there is little hope to match the dynamics of D = 11 supergravity in a Kaluza-

Klein reduction of an arbitrary sixty dimensional geometry. However, there is a way around

these problems if an “exceptional geometry” is adapted. Using the tool of generalized coset

dynamics, we will make this more precise in the following sections.

– 7 –
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4 Coset dynamics

We will start by reviewing the conventional coset dynamics, before proposing its extension

that will prove to be relevant for supergravity.

4.1 Conventional coset dynamics

The dynamical degrees of freedom in these theories are parametrized by a symmetric space,

which is without loss of generality a right group coset

V ∈ G/K (4.1)

for a real, finite dimensional Lie group G and its maximal compact subgroup K. A priori,

there are independent left and right actions by g ∈ G and k ∈ K respectively:

V ′ = g · V · k. (4.2)

Note that this transformation (4.2) shows great similarity to the law of transformation of

a vielbein under a combined Diff ×SO action (3.2). Passing to a matrix representation R

of G with R(g) ∈ R
d×d, equation (4.2) reads with m̃, ñ, ã, b̃ = 1, . . . , d

R(V ′)m̃
ã = R(g)m̃

ñ R(V)ñ
b̃ R(k)b̃

ã.

The coset element V (4.1) then corresponds to the vielbein by R(V)m̃
ã = Em̃

ã, the left

action to the Jacobi matrix by R(g−1)ñ
m̃ = ∂ϕm̃

∂xñ and the right action to the local Lorentz

rotation R(k)
b̃
ã = O

b̃
ã in (3.2). This correspondence will be essential for the generalized

coset dynamics of section 4.2.

In complete analogy to fixing the local Lorentz symmetry by decreeing a particular

matrix form for the vielbein (2.8), it is possible to link the right K-action to the left

G-action on V by fixing the presentation of V, e.g. by a triangular gauge choice that is

equivalent to decreeing that the matrix representation of V be of triangular shape. Since

a left G-action perturbs this setting in general, a compensating kg(V) ∈ K is needed to

restore the shape of the matrix:

V ′ = g · V · kg(V). (4.3)

This is referred to as a non-linear realization of the symmetry G on the symmetric space

parametrized by the dim(g) − dim(K) degrees of freedom of V ∈ G/K. It is important to

keep in mind that the uniquely determined compensating rotation kg depends on V in gen-

eral.

As a next step, assume that V depends on some coordinates xm̃ with m̃ = 1, . . . , d.

Denoting the corresponding Lie algebræ by g and k, the Maurer-Cartan form allows for the

decomposition

V−1 · dV = P + Q (4.4)

– 8 –
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with one-form valued objects

P =: Pm̃dx
m̃ ∈ g ⊖ k

Q =: Qm̃dx
m̃ ∈ k.

The transformation of the gauged fixed coset element V under a left global action g ∈
G (4.3) dictates the induced transformation of P and Q:

P ′ = k−1
g · P · kg (4.5a)

Q′ = k−1
g · Q · kg + k−1

g · dkg. (4.5b)

Due to its transformation, Q defines a covariant derivative ∇ acting on K-representation

spaces ψ in a representation R:

Dψ := dψ − R(Q)ψ. (4.6)

The one form P however, transforms as a tensor (4.5a). It is therefore the basic building

block of Lagrangians, such as

L = gµν 〈Pµ,Pν〉 . (4.7)

Here, gµν is the inverse of the relevant space-time metric g (2.2) and 〈·, ·〉 the Cartan-Killing

metric of the Lie algebra g that is proportional to the trace for the matrix representation

of g. For G = E7(7) and four dimensional space-time µ, ν = 0, . . . , 3, the Lagrangian (4.7)

describes the dynamics of the scalar sector of N = 8 d = 4 supergravity [7].

It is obvious that the set of possible Lagrangians that are quadratic in derivatives is

quite restricted. For Lie groups with traceless matrix representations such as G = E7(7),

the Lagrangian (4.7) in fact is unique. The generalized coset dynamics of the next section

will provide a wider choice of Lagrangians with G = E7(7)-invariance.

4.2 Generalized coset dynamics

Inspired by the pioneering work of Borisov & Ogievetsky [3] and West [25], we would like

to discuss the following extension. Assume that the coordinates xm̃ the coset element

V depends on, form a representation space of G of dimension d. Introducing a matrix

representation R(g) ∈ R
d×d for g ∈ G, one can without loss of generality define an action

of g ∈ G on the coordinates xm̃ with m̃, ñ = 1, . . . , d

x′m̃ = R(g−1)ñ
m̃xñ. (4.8)

As in section 4.1, we insist that g ∈ G does not depend on the coordinates xm̃, i.e. it is a

global symmetry. Then the partial derivatives transform in the dual representation:

(

∂

∂xñ

)′

= R(g)ñ
m̃ ∂

∂xm̃
. (4.9)

– 9 –
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Hence, it is possible to define a derivative by multiplying with V−1 that transforms by the

induced kg ∈ K action under a global G action (4.3):

∂ ã := R(V−1)ã
m̃ ∂

∂xm̃
(4.10)

with ∂′ã = R(k−1
g )ã

b̃ ∂ b̃. (4.11)

The names of the indices of the matrix representations R are completely arbitrary a pri-

ori. It is only to emphasize the different transformation behaviour that we will follow the

convention to use indices from the middle of the alphabet for objects that transform as

G-representations (4.9) and indices from its beginning for K ⊂ G-representations such

as (4.11).

The definition of the derivative ∂ is the main ingredient of generalized coset dynamics:

A short look at the transformation of P (4.5) shows that it is consistent in this setting

to contract the indices of ∂ with the coset indices of P in a K-covariant way in order to

construct a Lagrangian with G-invariance.

This construction seems to suffer from one drawback. If derivative indices are con-

tracted with coset indices, the symmetry of general coordinate transformations Diff(d) is

broken in general to the subgroup G ⊂ Gl(d), because global transformations of the coor-

dinates correspond to the Gl(d) subgroup of Diff(d) [14].7 Keeping in mind the discussion

at the end of section 3, this exactly is what we want: An unbroken Diff(d)-symmetry for

d = 60 would be inconsistent with maximal supergravity.

However, we want to establish contact withD = 11 supergravity in the end, whose sym-

metry group contains Diff(11). Therefore, the constraint on the coupling of the Lagrangians

must be that in a Kaluza-Klein reduction to eleven dimensions, the diffeomorphism covari-

ance must be restored. Before discussing the rather complicated model suitable for D = 11

supergravity, we will illustrate this procedure in two simpler models.

4.2.1 G = Gl(d)

For the group of invertible d× d matrices Gl(d), we choose the minimal non-trivial repre-

sentation for the coordinates that is R
d. If we use the Lorentz group SO(d−1, 1) instead of

the compact subgroup K, the coset is without loss of generality [14] parametrized by (4.1)

V ∈ Gl(d)/SO(d− 1, 1). (4.12)

The Maurer-Cartan form (4.4) again decomposes into

V−1 · dV =: (Pã + Qã)R(V)m̃
ã dxm̃ ∈ gld (4.13)

with the one-form valued Lie algebra elements P ∈ gld ⊖ so(d−1,1), Q ∈ so(d−1,1) and

m̃, ã = 0, . . . , d− 1.

7To be precise, it is broken to the affine group A(d) being the semidirect product of Gl(d) with the

abelian group of translations whose Jacobi matrix is trivial, however. Hence, their induced kg ∈ K action

is trivial, too.
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In order not to overburden the notation, the matrix representation R of the (g = gld)-

elements P and Q will be simply denoted by adding indices ã, b̃, . . . = 0, . . . , d−1 to P and

Q. Then, it is an immediate corollary of the theorem 3.2 in [14] that the general action S,

being at most quadratic in derivatives, for this coset (4.12) is of the form

S =

∫

Rd

det(V)ddx
(

r0η
ãb̃Dã

(

P
b̃

)

c̃

c̃
+ r1Dc̃(Pã)

ãc̃ (4.14)

+r2(Pã)
ãc̃
(

Pd̃

)

c̃

d̃
+ r3

(

Pd̃

)ãc̃
(Pã)c̃

d̃ + r4η
ãb̃(Pã)d̃

c̃
(

Pb̃

)

c̃

d̃

+r5(Pã)
ãc̃(Pc̃)d̃

d̃ + r6η
b̃c̃
(

P
b̃

)

ã

ã
(Pc̃)d̃

d̃
)

with r0, . . . , r6 ∈ R, the invariant tensor of SO(d − 1, 1) or Minkowski metric η and the

covariant derivative D (4.6) acting on the SO(d− 1, 1)-tensor P:

Dã

(

P
b̃

)

c̃

d̃
= ∂a(Pb)c

d + (Qã)b̃
ẽ(Pẽ)c̃

d̃ + (Qã)c̃
ẽ
(

P
b̃

)

ẽ

d̃ − (Qã)ẽ
d̃
(

P
b̃

)

c̃

ẽ
.

This is a seven parameter family of actions with manifest Gl(d) invariance.8 There is one

particular choice

r0 = −1

2
, r1 =

1

2
, r2 = −1

2
, r3 =

1

2
, (4.15)

r4 = −1

4
, r5 =

1

2
, r6 = −1

4
,

with the property that the symmetry Gl(d) is enlarged to Diff(d). This immediately follows

from the fact that the action S (4.14) with the constants (4.15) is a different way of writing

the Einstein-Hilbert action SEH (3.1).

The independent degrees of freedom of the coset element V (4.12) exactly match the

ones of the symmetric G-tensor

gm̃ñ = R(V)m̃
ãR(V)ñ

b̃ηãb̃. (4.16)

Note that this notation allows to rewrite the entire formalism of generalized coset dynamics

in the G-covariant frame by substituting

(Pc̃)ãb̃
=

1

2
R(V−1)ã

m̃R(V−1)
b̃
ñ ∂ c̃gm̃ñ

in the Lagrangian (4.14). For the choice of constants (4.15), it is obvious that the symmetric

G-tensor g can be identified with the metric g (2.2) what justifies using the same symbol

for both objects. We will stick to the K-covariant frame however, because it allows to

discuss the induced action on representations of the covering group of K ⊂ G, on which

there is no direct action of G in general.

One might argue that G = Gl(d) is a quite trivial example, because the coset ele-

ment V ∈ G/K merely is the vielbein introduced in (2.2), but it provides the general idea.

This interpretation of V as the vielbein allows to replace the domain of integration R
d

in the action (4.14) by an unrestricted manifold Md in the usual sense for the choice of

constants (4.15).

8This could be reduced to a five-parameter family by isolating total derivative terms. In order to match

the Einstein-Hilbert action in the form (3.1), we dispense with this simplification.
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4.2.2 G = Sp(2n)

In a next step towards supergravity, we would like to consider the symplectic Lie group

G = Sp(2n) with compact subgroup K = U(n).9 Since the matrix representation of the

group Sp(2n) is of unit determinant and since Sp(2n) is a subgroup of Gl(2n), the general

action S being at most quadratic in derivatives, is immediately deduced from the action S

of the G = Gl(d) case (4.14) with indices ã, b̃, . . . = 1, . . . , 2n:

S =

∫

R2n

d2nx
(

r1Dc̃(Pã)
ãc̃ (4.17)

+r2(Pã)
ãc̃
(

P
d̃

)

c̃

d̃
+ r3

(

P
d̃

)ãc̃
(Pã)c̃

d̃ + r4η
ãb̃(Pã)d̃

c̃
(

P
b̃

)

c̃

d̃
)

.

Hence, there only is a four-parameter family of actions for the case of a symplectic coset

element. Which symmetry enlargement can we expect in this case?

It is obvious that the coset element V ∈ Sp(2n) cannot be identified with a general

vielbein any more and hence Diff(2n) symmetry is ruled out. However, the lower dimen-

sional symmetry Diff(n) can be obtained for specific choices of r1, r2, r3. This can be seen

as follows.

Assume that a theory is Diff(m)-invariant for some m ∈ N. Then the subgroup

Gl(m) ⊂ Diff(m) with constant Jacobian matrix ∂ϕ
∂x

must be a symmetry. The trans-

formation (4.3) implies that this Gl(m) further has to be a subgroup of Sp(2n). Therefore,

a necessary condition for Diff(m) symmetry is that Gl(m) is a subgroup of Sp(2n). The

solution to this representation theoretical problem obviously leads to m ≤ n [14].

The proof that the maximal diffeomorphism symmetry Diff(n) can be realized, is not

too complicated. Start with the well-known observation that Diff(n) is a subgroup of the

group of symplectomorphisms Symp(2n). This is the subgroup of Diff(2n) that preserves

a non-degenerate symplectic form. On the other hand, it is clear that the action S (4.14)

with the constants (4.15) has the symmetry group Diff(2n) for 2n = d. Hence, it is

in particular invariant under its subgroup Symp(2n). Furthermore, the latter symmetry

respects the choice V ∈ Sp(2d). Therefore, the constants in the action S (4.17) to obtain

Diff(n)-invariance have to be the same as in (4.15):

r1 =
1

2
, r2 = −1

2
, r3 =

1

2
, r4 = −1

4
. (4.18)

The interpretation of the coset V ∈ Sp(2n)/U(n) as a vielbein on a manifold would

only be consistent, if the transition matrices of coordinate charts were also in Sp(2n). This

is the case for a symplectic manifold (M2n,Ω), a 2n dimensional manifold M2n with a

non-degenerate closed symplectic form Ω. Darboux’s theorem guarantees the existence

of an atlas of coordinate charts whose transition matrices are symplectic and in which

the symplectic form has constant canonical form [21]. Hence, it is possible to replace the

domain of integration R
2n in the action S (4.17) for the choice of constants (4.18) by any

symplectic manifold (M2n,Ω).

9In the matrix representation of Sp(2n) as 2n × 2n matrices, the subgroup of antisymmetric matrices

forms a representation of U(n) [14].
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This is a first example of a constrained geometry: It is consistent to restrict the degrees

of freedom of the vielbein on a symplectic manifold with a metric of Euclidean signature

to Sp(2n)/U(n).10

4.2.3 G =
(

Gl(4) × E7(7)

)

⋉ N(4, 56)

The group that will prove to be relevant for D = 11 supergravity is G =
(

Gl(4)×E7(7)

)

⋉

N(4, 56), the semi-direct product of the product of the classical groups Gl(4) and E7(7) with

the nilpotent group N(4, 56), which is the tensor product of the lowest possible represen-

tations 4 of Gl(4) and 56 of E7(7). G is best understood by its matrix representation as

60 × 60 matrices:

V ∈
(

Gl(4) ∗4x56

0 E7(7)

)

. (4.19)

This structure is obviously tailored for a coset construction V ∈ G/K with the de Wit-

Nicolai group

K = SO(3, 1) × SU(8)/Z2.

In particular, any Lagrangian necessarily has the local covariance group SO(3, 1)×SU(8)/Z2

of D = 11 supergravity, if it is constructed from V (4.19) using the generalized coset

dynamics. We have shown in section 3 that the Lorentz covariance group is not affected

by a dimensional reduction a priori. Hence, reducing from the sixty dimensional setting to

D = 11 does not affect the SO(3, 1) × SU(8)/Z2 covariance. A further reduction to d = 4

trivially provides a theory with global manifest E7(7)-invariance.

To prove that there is an action with 60 coordinates that reduces to D = 11 supergrav-

ity amounts to showing that the general class of Lagrangians with G-invariance contains

one with the particular property that the diffeomorphism symmetry of D = 11 supergravity

is restored, at least for a subset of solutions with 49 independent Killing vectors.

The last subclause is essential: For the cases G = Gl(d) and G = Sp(2n), there ex-

isted extensions to infinite dimensional groups Diff(d) and Symp(2n) respectively. Cartan’s

theorem [5] implies that this can be ruled out for E7(7), because there is no infinite dimen-

sional subgroup H of Diff(56) containing E7(7) with the property that for every ϕ ∈ H,

the Jacobian matrix ∂ϕ
∂x

is an E7(7) element. Hence, G cannot be extended to a symmetry

group that contains Diff(4) × Diff(7) ⊂ Diff(11) without violating V ∈ G/K [14].

The crucial observation is that we do not have to require this at all. Since D = 11

supergravity does not know anything about the remaining 49 coordinates, it is completely

sufficient that a subset of solutions with 49 independent Killing vectors forms an or-

bit of Diff(11).

This is to be understood in complete analogy to the space of solutions of the wave

equation in d = 4 dimensional flat Minkowski space. The set of solutions depending on all

10Keeping in mind that the names of the indices are arbitrary, the statement V ∈ Sp(2n) is equivalent

to R(V)m̃
ã = Ωm̃ñR(V−1)b̃

ñΩb̃ã with the canonical symplectic form Ωãb̃ and Ωãb̃Ωb̃c̃ := δb̃
c̃. The definition

of the metric gm̃ñ = R(V)m̃
ã
R(V)ñ

b̃ηãb̃ (4.16) is however equivalent to R(V)m̃
ã = gm̃ñR(V−1)b̃

ñηb̃ã. More

details and further references can be found in [14].
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spacetime dimensions forms an orbit of the finite dimensional conformal symmetry group

SO(4, 2)/Z2. The subspace of solutions that depend on two spacetime dimensions however

forms an orbit of the infinite dimensional symmetry group of conformal transformations in

two dimensions.

In this article, we will not construct the complete generalized coset dynamics in sixty

dimensions that is expected to have a hidden Diff(11) symmetry in its reduction to D = 11.

We will content ourselves with the 56-dimensional sector that corresponds to the E7(7) part

of the group G (4.19).

In the next section, we will prove that there is a Lagrangian in 56 dimensions that

exactly reproduces the dynamics of D = 11 supergravity upon dimensional reduction to

the seven common dimensions, if only the degrees of freedom that are encoded in the

E7(7)-valued 56 × 56 submatrix of V (4.19) are taken into account. Furthermore, we will

explain with mere group theoretical arguments in section 5.5 why adding four additional

dimensions appears to be preferred.

5 Bosonic dynamics

5.1 G = E7(7)

The discussion in the previous section indicates that the investigation of the generalized

coset dynamics for the Lie group G = E7(7) may be interesting for supergravity. Hence, we

focus on the coset

V ∈ E7(7)/(SU(8)/Z2). (5.1)

The lowest dimensional, non-trivial representation space of E7(7) is R
56, on which the group

acts as prescribed in (4.8). Since E7(7) also preserves a symplectic form, it is a subgroup of

Sp(56). Hence, the action (4.17) from section 4.2.2 provides the general ansatz to construct

the dynamics. The general action with E7(7)-invariance that is of at most second order in

derivatives and exclusively depends on the coset element V (5.1) reads

S =

∫

R56

d56x
(

r1Dc̃(Pã)
ãc̃ (5.2)

+r2(Pã)
ãc̃
(

P
d̃

)

c̃

d̃
+ r3

(

P
d̃

)ãc̃
(Pã)c̃

d̃ + r4η
ãb̃(Pã)d̃

c̃
(

P
b̃

)

c̃

d̃
)

.

The objects P and Q follow the definition (4.13). The matrix representation of E7(7) as

56×56-matrices provides the canonical embedding of E7(7) in Gl(56). Therefore, the indices

ã, c̃, . . . in the action S (5.2) take the values 1, . . . , 56.

The maximal compact subgroup of E7(7) is K = SU(8)/Z2 (5.1). In the matrix rep-

resentation of E7(7) as 56 × 56 matrices, the corresponding compact group elements are

presented as real orthogonal matrices due to the embedding SU(8)/Z2 ⊂ SO(56). This im-

plies that it does not matter if the indices ã, c̃, . . . in the action (5.2) are raised or lowered,
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because their position can be freely adjusted with the symmetric invariant tensor η
ãb̃

of

SO(56) in complete analogy to the Gl(d)-case from section 4.2.1.11

In a further step, we adapt the notation to the symmetry structure. This is achieved by

observing that the 56 dimensional representation space of E7(7) splits into two irreducible

representations of SU(8)/Z2:

56 = 28 + 28. (5.3)

It is important to note that the real Lie group SU(8)/Z2 necessitates a complex 28 dimen-

sional vector space to act on. Hence, it is natural to introduce 28 holomorphic coordinates

instead of 56 real ones. The contragredient or dual representation 28 in (5.3) then sim-

ply corresponds to the antiholomorphic coordinates, i.e. a complex conjugation. Since the

group K is SU(8)/Z2 and not U(28), it is furthermore appropriate to label these holomor-

phic coordinates by the antisymmetric pair [AB] with A,B = 1, . . . , 8. Hence, the one-form

P (4.13) decomposes into

P =: PABR(V)m̃
ABdxm̃ + c.c. (5.4)

with m̃ = 1, . . . , 56 and the abbreviation c.c. for complex conjugation. In contrast to

the SO(56) indices ã, the position of the SU(8)/Z2 indices AB is not arbitrary: Lowering

or raising indices is equivalent to a complex conjugation. We make use of the standard

convention to distinguish complex conjugated objects only by the position of their SU -

indices, e.g. PAB = P∗
AB . In this notation, equation (5.4) reads

P =:
(

PABR(V)m̃
AB + PABR(V)m̃,AB

)

dxm̃

Relabelling the indices, the action (5.2) takes the form

S =

∫

R56

d56x
(

r1

(

DAB(PCD)ABCD + c.c.
)

+ r2 (PAB)ABCD
(

PEF
)

CDEF

+r3 (PAF )ABCD
(

PEF
)

EBCD
+ r4 (PEF )ABCD

(

PEF
)

ABCD

)

. (5.5)

The strong restriction V ∈ E7(7)/(SU(8)/Z2) is the reason why not more terms appear

in this expansion. The one forms P ∈ e7(7) ⊖ su8 and Q ∈ su8 form the irreducible
(8
4

)

= 70 and 63 dimensional su8-representation spaces respectively. The ε-tensor in eight

dimensions links the one form PEFGH to its complex conjugated PEFGH = P∗
EFGH in an

su8-covariant way:

PABCD =
1

4!
εABCDEFGHPEFGH . (5.6)

We refrain from calling the one-form P with four completely antisymmetrized su8-indices

“selfdual”, because the ε tensor relates complex conjugated objects in this case. To con-

clude this section, we remark that the complex conjugate only has to be added to the first

term in the action S (5.5). Due to the relation (5.6), the other three contributions are real

on their own.
11Since SU(8)/Z2 also is a subgroup of Sp(56), it is of course equivalently possible to raise and lower the

K-indices ã, b̃, . . . with the symplectic form Ω.
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5.2 The hidden symmetry Diff(7)

As explained in section 4.2.3, we will fix the constants r1, . . . , r4 ∈ R in the action S (5.5)

such that some diffeomorphism symmetry is restored. Due to Cartan’s theorem [5], this can

only be possible for a subset of solutions with 49 independent Killing vectors or equivalently,

in a Kaluza-Klein reduction.

In complete analogy to the argument for the case of G = Sp(2n) in section 4.2.2, a

necessary criterion for Diff(m) to be a symmetry group is that Gl(m) be a subgroup of

E7(7). The maximal solution to this representation theoretical problem is Gl(7) ⊂ E7(7).

Therefore, we will try to choose r1, . . . , r4 ∈ R such that Diff(7) is a hidden symmetry of

the action S (5.5). To achieve this, it is natural to first parametrize the Lie algebra e7(7)

by gl7-representations:

133 = 49 ⊕
(

35 ⊕ 35
)

⊕
(

7 ⊕ 7
)

.

As a next step, recall from section 4.2.1 that the Lagrangian can be written purely in

terms of the symmetric G-tensor g (4.16). Hence, it is obvious that only the 133−63 = 70

degrees of freedom of the completely gauge fixed coset element V ∈ E7(7)/(SU(8)/Z2) ap-

pear in the action S (5.5). Therefore, we can without loss of generality partly fix the

SU(8)/Z2-symmetry to SO(7) by requiring that the coset follows the block-triangular de-

composition

V =: eha
b M̂

a
beAabcÊabc

eAa1...a6Êa1...a6
(5.7)

with the indices a, b, . . . = 4, . . . , 10, the matrix exponential e and the e7(7)-generators

M̂ and Ê in their representation as 56 × 56 matrices, whose non-vanishing commutation

relations are [14]

[

M̂
e
f , M̂

g
h

]

= δg
f M̂

e
h − δe

h M̂
g
f (5.8a)

[

M̂
e
f , Ê

abc
]

= 3δ
[a
f Ê

bc]e (5.8b)
[

M̂
a
b, Ê

e1...e6

]

= 6δ
[e6

b Êe1...e5]a (5.8c)
[

Êefg, Êabc
]

= 40Êefgabc. (5.8d)

Since we have not fixed the SO(7) in the SU(8)/Z2 symmetry, the Gl(7) part in (5.7) in

fact is a coset

eha
b M̂

a
b ∈ Gl(7)/SO(7). (5.9)

As soon as the Diff(7) symmetry is established, the Gl(7)/SO(7) will be parametrized by

an unrestricted vielbein in seven dimensional Euclidean space.

The decomposition of E7(7) into Gl(7) representations also uniquely induces a decom-

position of the 56 dimensional representation space into Gl(7) representation spaces:

56 = 7 ⊕ 21 ⊕ 21 ⊕ 7. (5.10)
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Contragredient representations of Gl(7) appear in this decomposition of 56. This is of

course expected due to the fact that E7(7) is a subgroup of Sp(56). Hence, there is a

preserved symplectic structure Ω which is the reason why we will denote the variables in

dual representations by momenta p instead of coordinates x. Therefore, one can without

loss of generality arrange the labelling of the 56 coordinates so as to make manifest the

decomposition (5.10) namely

∂

∂xm
:= δm̃

m−3

∂

∂xm̃
,

∂

∂pmn
:= δm̃−7, [mn] ∂

∂xm̃
,

∂

∂xmn
:= δm̃−28

[mn]

∂

∂xm̃
,

∂

∂pm
:= δm̃−49, m−3 ∂

∂xm̃

with the range of the indices m̃ = 1, . . . , 56, m,n = 4, . . . , 10 and δ1[4 5] = 1 et cetera. We

will use the same labelling for the derivatives ∂ (4.10)

∂a := δã
a−3∂ ã, ∂ab := δã−7, [ab]∂ã,

∂ab := δã−28
[ab] ∂ã, ∂a := δã−49, a−3∂ã

with ã = 1, . . . , 56 and a, b = 4, . . . , 10 respectively. Then, the relation ∂
∂xm̃ =

R(V)m̃
ã ∂ã (4.10) can be written in the matrix formalism with the obvious contraction

of indices:










∂
∂xm

∂
∂pmn

∂
∂xmn

∂
∂pm











=











R(V)m
a R(V)m,ab R(V)m

ab R(V)m,a

R(V)mn,a R(V)mn
ab R(V)mn,ab R(V)mn

a

R(V)mn
a R(V)mn,ab R(V)mn

ab R(V)mn,a

R(V)m,a R(V)mab R(V)m,ab R(V)ma





















∂a

∂ab

∂ab

∂a











It follows from the commutation relations (5.8) that the parametrization of the coset V (5.7)

really is block-triangular. This is equivalent to stating that the generators Ê are repre-

sented by nilpotent upper triangular 56 × 56 matrices. Hence, the top left corner of the

matrix representation of V may only depend on the Gl(7)/SO(7)-degrees of freedom (5.9).

Therefore, these can be parametrized by

R(V)m
a =: ∆

1
2 em

a (5.11)

with ∆ := det(em
a) as in (2.9). It should be noted that the Gl(7) embedding in E7(7)

is unique only modulo a rescaling by the Gl(1) factor corresponding to ∆ [14]. The

choice (5.11) will prove appropriate to uncover the hidden Diff(7) symmetry.

With this definition and the convention to denote the inverse “siebenbein” ea
m simply

by a different naming of indices, i.e. em
aea

n = δn
m, the gauged fixed coset element V ∈

E7(7)/(SU(8)/Z2) is represented as a 56 × 56 matrix in the following way [14]

R(V)=













∆
1
2 em

a −
√

2∆
1
2 em

cAabc

√
2∆

1
2 em

cUc
ab
+ −∆

1
2 em

cUac

0 ∆
1
2 ea

meb
n −1

6∆
1
2 ec

med
nAa1...a3ε

cda1...a3ab
√

2∆
1
2 ec

med
nUa

cd
−

0 0 ∆− 1
2 em

aen
b −

√
2∆− 1

2 em
cen

dAcda

0 0 0 ∆− 1
2 ea

m












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with the abbreviations

Ud
jk
− :=

1

12
AabcAghdε

jkghabc − 1

360
Aa1...a6ε

a1...a6[jδ
k]
d , (5.12a)

Ud
jk
+ :=

1

12
AabcAghdε

jkghabc +
1

360
Aa1...a6ε

a1...a6[jδ
k]
d , (5.12b)

Uad :=
1

180
Aa1...a6Aabdε

ba1...a6 +
1

18
AarsAghiAkldε

rsghikl. (5.12c)

5.3 Connecting Gl(7)- and SU(8)/Z2-representations

In order to be able to decide, whether there are constants r1, . . . , r4 ∈ R for the action

S (5.5) such that a hidden Diff(7) symmetry appears in a Kaluza-Klein reduction, the

Gl(7) representations of section 5.2 have to be linked to the SU(8)/Z2 representations that

were used in the action S (5.5). This is done by first splitting the Gl(7) representations

into SO(7) representations and recombine them afterwards into SU(8)/Z2 representations.

For the last step, one has to introduce the Clifford algebra with the seven dimensional

Euclidean metric η and a, b = 4, . . . , 10

{Γa,Γb} = 2ηab. (5.13)

It is well known that it has a representation in terms of purely imaginary matri-

ces Γa ∈ iR8×8.12

The transformation between the holomorphic cooordinate frame defined by the decom-

position (5.3) and the one of Gl(7) (5.10) is provided by the following identification, e.g.

for the derivative ∂ (4.10) with a, b = 4, . . . , 10 and A,B = 1, . . . , 8 [14]

∂AB = 6iΓa
AB (∂a − iηac∂

c) − 2
√

2Γab
AB

(

∂ab − iηacηbd∂
cd
)

. (5.14)

With these definitions, it is a straightforward computation [14] to arrive at the following

identifications for the components Pα and Qα (4.13):

(Qã)A
B :=

1

3
R(V−1)AC

m̃∂ ãR(V)m̃
BC

=
1

4
(Qã)e

fΓe
f A

B +
1

12
(Pã)a1...a3

Γa1...a3
A

B

− i

1440
(Pã)a1...a6

εa1...a6cΓcA
B (5.15a)

(Pã)
ABCD := R(V−1)AB,m̃∂ãR(V)m̃

CD

= −3

4
(Pã)e

fΓe[ABΓf
CD]

−1

4
(Pã)a1...a3

Γ[a1a2
[AB

Γa3]CD]

+
i

2880
(Pã)a1...a6

εa1...a6cΓec
[ABΓeCD] (5.15b)

with m̃, ã = 1, . . . , 56 and the abbreviations

(Pã)c
d := eg

m∂ ãem
(dηf)gηcf (5.16a)

12Furthermore, we define Γa1...an := Γ[a1 · · ·Γan] with antisymmetrization of strength one and we fix the

normalization Γa1...a7 = −iεa1...a71l8 with ε1 2 3 4 5 6 7 = 1.
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(Qã)c
d := eg

m∂ ãem
[dηf ]gηcf (5.16b)

(Pã)a1...a3
:= ∂ ãAa1...a3 + 3Af [a1a2

ea3]
m∂ ãem

f (5.16c)

(Pã)a1...a6
:= ∂ ãAa1...a6 − 6Af [a1...a5

ea6]
m∂ãem

f (5.16d)

−20A[a1...a3
(Pã)a4...a6] .

The definitions of the first two objects in (5.16) coincide with the ones (2.5) that have

already been used for supergravity in section 2.1. The factor 1
3 in (5.15a) guarantees the

standard normalization of the associated su8 generators [14].

5.4 The bosonic Lagrangian

This parametrization of P and Q in terms of Gl(7) representations em
a, Aabc and Aa1...a6

allows to decide whether the constants r1, . . . , r4 in the action S (5.5) can be chosen in such

a way that the global Gl(7) ⊂ E7(7) symmetry of the space of solutions with 49 independent

Killing vectors can be enlarged to a local symmetry of the type of Diff(7). We find that

there is a unique choice of r1, . . . , r4 leading to such an enlarged local symmetry:

L =
(

DAB(PCD)ABCD + c.c.
)

(5.17)

−8

3
(PAF )ABCD

(

PEF
)

EBCD
+

1

6
(PEF )ABCD

(

PEF
)

ABCD
.

However, we only obtain a subgroup of Diff(7), namely the volume preserving diffeomor-

phisms, as a hidden symmetry. To prove this statement, we perform a Kaluza-Klein reduc-

tion of the Lagrangian (5.17) to the seven coordinates that correspond to the 7 coordinates

in the decomposition (5.10), which leads to

LKK = 279∆−1

(

1

4
R̃7 −

1

48
Fb1...b4F

b1...b4 − 4!

7!248
F̃ 2

)

(5.18)

+279

[

3

4
ηab∆−2∂a∆ ∆−1∂b∆ +

3

4
ηab ∂

∂xm

(

∆−1ea
m ∆−1∂b∆

)

]

with the Ricci scalar R̃7 (2.5) in d = 7 and the abbreviations

Fabcd := 4(P[a)bcd] (5.19a)

F̃ := F̃a1...a7ε
a1...a7 (5.19b)

= 7(Pa1)a2...a7ε
a1...a7 ,

where we use the frame derivative ∂a := ea
m ∂

∂xm in (5.18), in R̃7 (2.5) and in the defini-

tions (5.16) instead of ∂a.

The parenthesis in the first line of the Lagrangian LKK (5.18) obviously is Diff(7)

invariant, but the terms involving the determinant ∆ do not match. (Note however that

the last term is a total derivative.) A different parametrization of the Gl(7)/SO(7)-coset

than (5.11), which would be equivalent to a Weyl rescaling in seven dimensions, does not

cure this problem. Hence, one does not obtain Diff(7) as a hidden symmetry, but only its

infinite dimensional subgroup of volume preserving diffeomorphisms that are characterized
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by a unimodular Jacobian matrix ∂ϕ
∂x

[5]. This problem can be cured by coupling additional

dimensions to the setting, what we shall show next.13

5.5 Restoring Diff(7)

Since the problematic terms in the Lagrangian LKK (5.18) only depend on the determinant

∆, a Weyl rescaling of d additional dimensions may provide the solution. Hence, one should

investigate whether a Lagrangian in 7 + d dimensions with symmetry group Diff(7 + d)

leads to the Lagrangian LKK (5.18) after a Weyl rescaling by ∆z for z ∈ R of the vielbein

that corresponds to the other d dimensions. Fixing the SO(6 + d, 1) symmetry to SO(d−
1, 1)× SO(7), we can without loss of generality assume the following shape for the vielbein

E in 7 + d dimensions:

E7+d =

(

∆zeµ
α Bµ

a

0 em
a

)

. (5.20)

The range of the indices is µ, α = 0, . . . , d − 1 and m,a = d, . . . , d + 6. From the group

theory point of view, this amounts to defining an action of the Gl(1)[x] part of Diff(7)

on the additional d coordinates. Hence, the d × d-part of the vielbein has to contain the

corresponding factor of ∆. Next, observe that the simplifying assumptions

eµ
α = δα

µ and (5.21a)

Bµ
a = 0 (5.21b)

do not affect the contributions of the Ricci scalar R̃7+d that exclusively depend on ∆. In

this truncation, we obtain

det(E7+d)R̃7+d = ∆zd+1
(

R̃7 − zd[z(d + 1) − 4]ηab∆−1∂a∆ ∆−1∂b∆
)

−2zd
∂

∂xm

(

∆−1ea
m∆−1∂b∆

)

ηab.

The second line is a total derivative contribution, which does not alter the dynamics pre-

scribed by the Lagrangian. Comparing this equation to the reduced Lagrangian LKK (5.18)

leads to the unique solution

d = 4 (5.22a)

z = −1

2
. (5.22b)

This is a remarkable fact. The unique possibility to enlarge the Gl(7) symmetry acting

on the solutions of the action S (5.17) that only depend on the 7 coordinates in (5.10)

to Diff(7) is to consider a generalized coset that contains d = 4 further directions, if one

starts with Einstein-Hilbert actions in 7 + d dimensions. The necessary Weyl rescaling by

∆z is uniquely fixed by (5.22), too.

13Furthermore, the Lagrangian LKK (5.18) reveals that the symmetries associated to the nilpotent gen-

erators Êabc and Êa1...a6 (5.7) (part of the Borel subgroup of E7(7)) have been promoted to the two- and

five-form gauge symmetries of supergravity.
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5.6 Comparison to D = 11 supergravity

The conclusion of our study so far is that it appears to be “natural” from a pure E7(7) point

of view to discuss a 56+4 dimensional setting and the hidden symmetries in a truncation to

7 + 4 dimensions. A comparison of the Weyl rescaling (5.22) with (2.8) furthermore shows

that this exactly is the one used for D = 11 supergravity to reveal the E7(7) symmetry in

the truncation to four dimensions [7].

Therefore, it looks promising to try to establish a link between the parametrization of

the coset element V (5.7) and the fields of D = 11 supergravity. For the G = E7(7) case

discussed in this section, the Lagrangian LKK (5.18) only contains the siebenbein em
a, the

four-form field strength Fb1...b4 and the seven-form field strength F̃a1...a7 . Since the rela-

tions (5.19) completely agree with the definitions of F (2.4) and of F̃ (2.6b) in supergravity,

one can identify these objects as already anticipated by using the same notation. Substi-

tuting a four form field strength F in four dimensions for the seven-form field strength F̃

in seven dimensions by the standard definition of supergravity (2.6a)

Fα1...α4 :=
1

7!
εα1...α4a1...a7F̃a1...a7 , (5.23)

the Lagrangian LKK (5.18) with the Weyl rescaling and the truncation (5.21) of section 5.5

takes the form modulo total derivative terms and modulo a constant rescaling

LKK = det(E11)

(

1

4
R̃11 −

1

48

(

Fb1...b4F
b1...b4 − Fα1...α4F

α1...α4

)

)

. (5.24)

A comparison with the Lagrangian of D = 11 supergravity shows exact agreement modulo

total derivative terms, which are also needed to transform the Chern-Simons term into a

contribution to the term Fα1...α4F
α1...α4 that effectively flips the sign. It is important to note

that all the other terms of D = 11 supergravity cannot be expected to appear in this gener-

alized coset model, because they are not contained in the coset V ∈ E7(7). After discussing

fermions in the next section, we will comment on the remaining fields in section 7.1.14

The important result of this section is that the mere quest for an E7(7)-invariant

theory with hidden Diff(7)-symmetry upon dimensional reduction unambiguously leads

to the dynamics of D = 11 supergravity in the truncation to the fields and dimensions

common to both theories. Note in particular that our E7(7)-based interpretation of a part

of the D = 11 supergravity Lagrangian is different and, so to say, complementary to the

one of Cremmer & Julia [7]: The global E7(7)-symmetry of d = 4 N = 8 supergravity does

not act on the coordinates and hence, these four dimensions are orthogonal to the seven

dimensions discussed in this section.

6 Supersymmetry and fermionic dynamics

In section 5, we have constructed a Lagrangian from the coset degrees of freedom V ∈
E7(7)/(SU(8)/Z2). As a next step, we will address the question, whether it is possible to

14For the extraction of the equations of motion, one has to keep in mind that the independent off-shell

degrees of freedom are Aabc and Aa1...a6
in this formulation.
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extend the bosonic dynamics discussed above by other fermionic fields such that there is

a Graßmann valued supersymmetry transformation linking the solutions of the existing

bosonic theory to the fermionic dynamics, which also exhibits a hidden Diff(7) symmetry.

6.1 Definition of the variation δ

We start by recalling that any symmetry transformation is uniquely defined by a derivation

δ. Its action on the coset element V (5.1) can be decomposed in two parts in complete

analogy to the Maurer-Cartan form V−1 · dV (4.4)

V−1 · δV ∈
(

e7(7) ⊖ su8

)

⊕ su8. (6.1)

As in (4.5), the su8-part of this coset

Λ := prsu8

(

V−1δV
)

(6.2)

does not transform as a tensor, but as a connection. This leads to the definition of a

covariant supersymmetry transformation δ acting on K-representation spaces ψ in a rep-

resentation R in complete analogy to the definition of the covariant derivative D (4.6):

δψ := δψ − R(Λ)ψ. (6.3)

Thus, both ψ and δψ are su8-tensors with respect to the SU(8)/Z2-action induced by a

global E7(7)-transformation (4.3). In contradistinction, δψ is not a tensor, because the

compensating kg(V) ∈ SU(8)/Z2 transformation depends on the coset field V in general.

The definition (6.3) also implies

V−1 · δV ∈ e7(7) ⊖ su8. (6.4)

As a next step, we want to specify the variation (6.4). We begin by recalling that

for any continuous supersymmetry transformation, there has to be a Graßmann valued

symmetry parameter ǫ, in which the variation is linear [14]. In order to preserve covariance

under the global E7(7) action, ǫ must form a representation on which at least the induced

K-action is defined. It is obvious that the minimal dimension for a non-trivial action is

8C, if representations of the double cover SU(8) of K = SU(8)/Z2 are included.

In this setting, we have to introduce fermions χ that link the variation
(

V−1δV
)[ABCD]

(6.4) to the symmetry parameter ǫA with A,B, . . . = 1, . . . , 8. By SU(8)

covariance, the Graßmann valued fields χ must furnish the 56C-dimensional representa-

tion χ[ABC], if derivatives of fermions are excluded. The unique symmetry transformation

possible then has the form

(

V−1δV
)ABCD

=: ǫ[AχBCD] +
1

4!
εABCDEFGHǫEχFGH . (6.5)

Adding the second term on the right hand side of (6.5) is necessary to guarantee that

V−1δV ∈ e7(7) ⊖ su8 (6.4) is real, in complete analogy to the equation (5.6). Again, we use

the convention that changing the position of the SU(8) index corresponds to a complex

conjugation, e.g. ǫA = ǫ∗A.
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Furthermore note that passing to the double cover SU(8) of SU(8)/Z2 does not pose

any problems. The kg ∈ SU(8)/Z2 action induced by g ∈ E7(7) is well-defined on any prod-

uct of SU(8) representations with an even number of SU(8) indices. The induced SU(8)

action on ǫ and χ hence is in complete analogy to the Spin(d − 1, 1)-actions on fermionic

matter in general relativity that are induced by general coordinate transformations using

the vielbein formalism.

6.2 Fermionic δ-variations and Diff(7)

In order to complete the definition of the variation δ, we have to fix its action on the

fermion χ. The requirements are linearity in the transformation parameter ǫ and that it

should map to the degrees of freedom of the coset V in an SU(8)-covariant way. Modulo

nonlinear terms in either χ or derivatives, the general ansatz for this transformation is a

three-parameter family with c0, c1, c2 ∈ R:

δχABC = c0D[ABǫC] + c1(PEF )EF [ABǫC] + c2(PEF )EABCǫF . (6.6)

In complete analogy to the discussion of the bosonic dynamics in section 5, the constants

c0, c1, c2 ∈ R in the variation (6.6) will be fixed in such a way that the hidden Diff(7)

symmetry is respected in a reduction to seven dimensions. In contradistinction to the

variation to the bosons (6.5), this requirement is non-trivial due to the appearance of

derivatives in (6.6) that are not Diff(7)-covariant in general.

At first, we use the decomposition of P and Q into SO(7) representations (5.15).

Substituting these formulæ into the variation δχ (6.6), we have to look for non-trivial

constants c0, c1, c2 such that all derivatives along the 7 directions of Aabc and of Aa1...a6

combine into the Diff(7)-covariant field strengths F and F̃ (5.19) respectively. This is not

possible a priori.

However, it should be kept in mind that the explicit parametrization (5.7) of the coset

V ∈ E7(7)/(SU(8)/Z2) reduces the SU(8)/Z2 covariance to SO(7), as we have explained

in section 5.2. In particular, the SO(7) covariance is completely sufficient for the Diff(7)

covariance in the reduction 56 → 7. Hence, it is admissible to use the SO(7) covariant

intertwiners Γa (5.13), the Γ-matrices, to rearrange the degrees of freedom of the SU(8)-

representation χ into a Spin(7)-representation by

(χa)
C :=

i

9

(

δb
aδ

C
D +

1

8
Γa

b
D

C
)

ΓbABχ
ABD (6.7a)

⇒ χABC = 3!iΓa[AB(χa)
C] (6.7b)

with a, b = 4, . . . , 10 and A,B,C = 1, . . . , 8. It is clear that this is no truncation, because

the degrees of freedom of χABC and (χa)
C match

(

8

3

)

= 56 = 7 · 8.

With this rearrangement of degrees of freedom and with the choice

c0 = 1, c1 = −1

2
, c2 =

2

3
(6.8)
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for the constants in (6.6), we obtain after dropping all terms that contain partial derivatives
∂

∂xmn , ∂
∂pmn

or ∂
∂pm

[14]:

∆
1
4 δ(χd)

C
∣

∣

∣

∂
∂xm

= ∂d

(

∆− 1
4 ǫC
)

+
1

4
ωde

fΓe
f

C
D

(

∆− 1
4 ǫD

)

+
1

144
Fa1...a4

(

Γa1...a4
d
C

D − 8δa1
d Γa2...a4C

D

)(

∆− 1
4 ǫD

)

− i

7!6
F̃Γd

C
D

(

∆− 1
4 ǫD

)

. (6.9)

In this formula, we used the abbreviations ω (2.5), ∆ (2.9), F and F̃ (5.19). To obtain a

Diff(7) covariant transformation, the fields ǫ and χ are rescaled by the determinant factors

∆ of em
a in analogy to a Weyl rescaling (5.20). This is possible due to the following

equality modulo quadratic terms in χ that were neglected in the definition of the variation

δχ (6.6) anyway:

∆
1
4 δ(χd)

C = δ
(

∆
1
4 (χd)

C
)

+ O(χ2) (6.10)

The statement (6.10) follows from the fact that ∆ is part of the coset V (5.7) and hence

its variation under δ can be deduced from (6.5). We will provide explicit formulæ for the

rescaling of χ and ǫ in section 6.4.

6.3 δ and the additional four dimensions

In the end, we should be interested in a complete picture of the generalized coset dynamics.

In particular, we want to discuss a theory that contains the coset V ∈ E7(7)/(SU(8)/Z2)-

coset, but whose reduction is Diff(7) invariant by itself. The result of section 5.5 was that

this requirement naturally leads to four additional dimensions with the additional fields

eµ
α and Bµ

a (5.20). The minimal E7(7)-covariant extension that allows to include eµ
α and

Bµ
a in a coset description is the group presented in section 4.2.3

G =
(

Gl(4) ×E7(7)

)

⋉ N(4, 56). (6.11)

This ansatz is promising, because it allows to construct a coset with the de Wit-Nicolai

covariance group SO(3, 1) × SU(8)/Z2 of D = 11 supergravity:

V ∈ G/
(

SO(3, 1) × SU(8)/Z2

)

. (6.12)

The additional degrees of freedom of the four dimensional vielbein eµ
α (5.20) parametrize

the top left block of the matrix representation of V in (4.19) and the field Bµ
a (5.20)

is contained in the top right block of (4.19). The complete parametrization of the coset

V (6.12) in terms of Gl(7) representations will be provided in section 7.1.

The definition of the variation δ from section 6.1 has to be adapted to this extended

setting. At first, the relation (6.4) is replaced by

V−1δV ∈
(

e7(7) ⊖ su8

)

⊕
(

gl4 ⊖ so(3,1)

)

⊕ n(4,56). (6.13)
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As before, we want to assume a non-trivial realization of the covariance group on

the continuous symmetry parameter ǫ. Then, the lowest real dimension is 32 due to the

following reason: Passing to the covering Spin(3, 1)× SU(8) of the de Wit-Nicolai group, a

Spin(3, 1)-representation is constructed from the Clifford algebra (5.13)

{γα, γβ} = ηαβ (6.14)

with the Minkowksi metric η = diag(−1, 1, 1, 1) that has a representation as real matrices

γα ∈ R
4×4. It is a standard observation that the real matrix

γ5 := γ0γ1γ2γ3 (6.15)

squares to −1l4.
15 This is the reason why the vector space

4R ⊗ 8R (6.16)

forms a representation space of Spin(3, 1)×SU(8), with Spin(3, 1) acting irreducibly on the

first factor 4R and the so-called “chiral” SU(8) [7] acting on both factors in (6.16) making

use of γ5 as the imaginary unit

γ5ǫ = iǫ. (6.17)

To put it in other words, this identification of γ5 with the imaginary unit i provides an

embedding of C in R
4. Following the lines of section 6.1, ǫ ∈ 4R ⊗8R implies that the 56C-

dimensional representation of the fermions χ now has to be extended to the real represen-

tation 4R⊗56R of Spin(3, 1)×SU(8), on which SU(8) acts in a chiral way with (6.17) again.

Next, we introduce the Majorana conjugate of ǫ ∈ 4R⊗8R in order to keep the notation

as simple as possible:

ǭA := (ǫt)Aγ0. (6.18)

This allows to suppress the spinor indices of 4R, e.g. the matrix indices of γα, in the

following. It should be noted that the position of the SU(8) index is not affected by the

four-dimensional transposition t.

It is obvious from equation (6.13) that the definition (6.5) is to be understood as

a projection of V−1δV (6.13) on e7(7) ⊖ su8. Due to the extension of ǫ ∈ 8C to ǫ ∈
4R ⊗ 8R (6.16), the equation (6.5) now takes the form

(

V−1δV
)ABCD

= ǭ[AχBCD] +
1

4!
εABCDEFGH ǭAχBCD. (6.19)

Raising or lowering the SU(8) indices of the fermions is hence equivalent to replacing γ5

by −γ5 in accordance with (6.17).

Before comparing these formulæ to supergravity, we extract the variations of the Gl(7)

representations em
a, Aabc and Aa1...a6 (5.7) from the one of the coset V (6.19). A short

calculation [14] leads to

eb
mδ em

c = iǭCΓc
CD(χb)

D + c.c. (6.20a)

15With the definition ε0 1 2 3 = 1, the definition (6.15) implies γ5ε
α1...α4 = γα1...α4 .
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ea1
m1 · · · ea3

m3δAm1...m3 = −3i

2
ǭCΓ[a1a2CD

(χa3])
D + c.c. (6.20b)

ea1
m1 · · · ea6

m6δAm1...m6 = −3iǭCΓ[a1...a5CD
(χa6])

D + c.c. (6.20c)

+20ea1
m1 · · · ea6

m6A[m1...m3
δAm4...m6]

with the definitions for i = 3, 6

Am1...mi
:= em1

a1 · · · emi

aiAa1...ai
. (6.21)

6.4 Second comparison to D = 11 supergravity

After having established a connection between the coset degrees of freedom of V ∈
E7(7)/(SU(8)/Z2) and the bosonic fields of supergravity in section 5.6, it is natural to

identify the variation δ (6.3) with the supersymmetry variation δε (2.7) of supergravity. Its

32 real dimensional transformation parameter ε is linked to the transformation parameter

ǫ ∈ 4R ⊗ 56R following Cremmer & Julia [7]:

ǫC =
1

2

√−γ5∆
+ 1

4 (1l4 − iγ5) ε
C (6.22a)

(χa)
C =

1

2

√−γ5∆
− 1

4 (1l4 − iγ5) (ψa)
C (6.22b)

with
√−γ5 :=

1√
2

(1l4 − γ5) .

Furthermore, the fermion χ ∈ 56R ⊗ 4R is identified with the gravitino ψ of supergravity

for the vector indices a = 4, . . . , 10 by (6.22b). It is nice to observe that the same rescaling

with the determinant ∆ (2.9) used by Cremmer & Julia [7] also is the correct choice in

order to obtain Diff(7)-covariance in the variation δχ (6.9).16

The identification (6.22) finally allows to compare the variations of the coset

V (6.20), (6.19) and of χ (6.9) to the ones of D = 11 supergravity (2.7). In the truncation

defined by (5.20), (5.21), these exactly match keeping in mind the standard decomposition

of Γ̃-matrices in eleven dimensions [14]

Γ̃α = γα ⊗ 1l8 for α = 0, . . . , 3, (6.23a)

Γ̃a =
γ5

i
⊗ Γa for a = 4, . . . , 10. (6.23b)

Note in particular that the normalizations of the coset fields Aabc and Aa1...a6 are fixed

by the comparison of the bosonic actions in section 5.6. Then it is a non-trivial result

that the numerical constants in the supersymmetry variations of the fermions (6.9) and of

the bosons (6.20) exactly agree with the ones of D = 11 supergravity (2.7) in the present

truncation [14].

Together with the group theoretical argument from section 5.5, this is a strong indi-

cation that the generalized coset dynamics of E7(7) is related to D = 11 supergravity.

16We emphasize again that the present discussion of the seven dimensional reduction of D = 11 su-

pergravity is complementary to the four dimensional one of Cremmer & Julia discussed in [7]. Relations

without derivatives such as (6.5) can also be found in their article, of course, in contrast to most of the

terms in e.g. the variation δχ (6.9), however.
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There is one additional fermion in supergravity whose counterpart in the generalized

coset dynamics has not been discussed so far, the gravitino ψα with the vector index α =

0, . . . , 3. Splitting the 32 dimensional spinor representation space of ψα into the product

4R × 8R as in section 6.3, it is natural to use the same definition as Cremmer & Julia [7]

(χα)C :=
1

2

√−γ5∆
− 1

4 (1l4 − iγ5)

(

(ψα)C +
i

2
γ5γαΓaC

D(ψa)
D

)

. (6.24)

The matrix γ5 obviously serves as a complex structure γ5(χα)C = i(χα)C as in (6.17).

Hence, (χα)C forms a representation space of Spin(3, 1) × SU(8). It remains to check

whether the SU(8)-covariant variation of this additional field allows for a hidden symmetry

Diff(7) upon a Kaluza-Klein reduction 56 → 7. This will be proved next.

6.5 Variation of χα

The procedure to obtain the symmetry transformation δ of (χα)C is completely analogous

to the one used for the field χABC in (6.6). By SU(8)-covariance and neglecting deriva-

tives along the additional four directions, the general Ansatz (modulo non-linear terms in

derivatives or χ) is with e1, e2 ∈ R

δ(χα)A = γα

(

e1DABǫ
B + e2

(

PCD
)

ABCD
ǫB
)

. (6.25)

This equation exhibits Diff(7)-covariance in the reduction 56 → 7 for the constants

e2 = −1

2
e1.

Setting e1 = 1
12 fixes the normalization of (χα)C in a suitable way for a comparison to

D = 11 supergravity. In a final step to simplify the notation, we suppress the SU(8)

indices of χ, ǫ and of the matrices Γ, if the way to contract them is unambiguous. Adding

a star to fermions with lowered SU(8) indices in order to distinguish them from the ones

with raised indices, we obtain for (6.25) with the formulæ for P and Q (5.15) in the same

truncation as in (6.9):

δχ∗
α| ∂

∂xm
=

i

2
γα∆− 1

2

[

Γa

{

∂aǫ+
1

4
ωab

cΓb
cǫ−

3

4
e−1∂aeǫ

}

− 1

48
Fa1...a4Γ

a1...a4ǫ− i

7!2
F̃ ǫ

]

This variation exactly agrees with the supersymmetry transformation of the remaining

gravitino degrees of freedom of D = 11 supergravity (2.7) in the present truncation.

6.6 Fermionic dynamics

After having defined an SU(8)-covariant variation that links the degrees of freedom of the

coset V to the fermions χ (6.6), (6.19), (6.25), we will investigate whether their dynamics

can be defined in such a way that a hidden Diff(7) symmetry appears in the Kaluza-Klein

reduction 56 → 7 again.
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We will follow the same pattern used for the action S of the coset degrees of free-

dom (5.5) in section 5.4: At first, we construct the general SU(8)-covariant Lagrangian in

56 dimensions that is linear in derivatives and at most quadratic in χ, where derivatives

along the additional four directions are neglected as before. Then, we fix the constants by

requiring the hidden Diff(7) symmetry to appear in the Kaluza-Klein reduction 56 → 7,

taking into account the Weyl rescaling of the additional four dimensions (5.20). Thus, one

is led to the following Lagrangian:17

Lfermions = − 1

12
χ̄ABC

[

DDEχFGH − 3

2
(PJK)DEJK χFGH

+2 (PJK)DEJF χKGH

]

εABCDEFGH

+
1

96
χ̄ABCγ

α

[

DAB(χα)C − 1

2
(PJK)ABJK (χα)C

+
2

3
(PJK)JABC (χα)K

]

+
1

12
(χ̄α)Aγαβ

[

DAB(χβ)B − 1

2

(

PJK
)

ABJK
(χβ)B

]

+
1

96
(χ̄α)Aγ

α

[

DBCχ
ABC − 11

6

(

PJK
)

JKBC
χABC

−2
(

PJ [A
)

JKBC
χBC]K

]

+ c.c.

To prove the hidden Diff(7)-symmetry, we perform the Kaluza-Klein reduction 56 →
7 (5.10) of this Lagrangian. After substituting the so7 decompositions of the bosonic

fields (5.15) and of the fermions (6.7) we obtain without dropping total derivative terms

nor making use of the anticommutativity of χ:

Lfermions|KK

= ∆− 1
2

[

χ̄k

(

3

2i
Γ(jηdk)

){

∂dχj +
1

4
ωde

fΓe
fχj + ωdj

fχf − 3

4
χf∆−1∂d∆

}

+
1

72
Fb1...b4 χ̄k

{

εb2...b4(j
rstη

k)b1 − 1

8
εb1...b4

rstη
jk

}

Γrstχj

− 1

2i
F b1...b4 χ̄b4Γb1b2χb3 +

1

7!
F̃ χ̄k

(

Γjk − 3

4
ηjk

)

χj

]

+∆− 1
2 χ̄∗

kγ
γ

[(

3

4
ηkc +

1

4
Γkc

){

∂cχγ +
1

4
ωce

fΓe
fχγ − 1

4
χγ∆−1∂c∆

}

− 1

64

(

ΓkΓb1...b4 − 2

3
Γb1...b4k

)

χγFb1...b4 −
3i

7!8
ΓkχγF̃

]

+∆− 1
2 χ̄βγ

βγ

[

i

2
Γc

{

∂cχγ +
1

4
ωce

fΓe
fχγ − 3

4
χγ∆−1∂c∆

}

17It is clear that only the constants inside the square brackets are fixed by requiring a hidden Diff(7) covari-

ance. The numerical factors linking the square brackets to each other are fixed by a comparison to D = 11

supergravity. We will comment on a possible group theoretic origin of these constants at the end of section 8.
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− i

96
Γb1...b4χγFb1...b4 +

1

7!4
χγF̃

]

+∆− 1
2 χ̄∗

βγ
β

[(

3

4
ηcj +

1

4
Γcj

){

∂cχj +
1

4
ωce

fΓe
fχj + ωcj

fχf

−5

4
χj∆

−1∂c∆

}

+
1

64

(

Γb1...b4Γj − 2

3
Γb1...b4j

)

χjFb1...b4 −
3i

7!8
ΓjχjF̃

]

+c.c.

In order to simplify the notation, the SU(8) indices of χ and Γ have been dropped,

which is possible with the star notation introduced in section 6.5. The important result is

that Lfermions|KK exactly coincides with the Kaluza-Klein reduction of the fermionic part

of the D = 11 supergravity Lagrangian (2.1) from section 2

Lfermions = det(E)

(

−1

2
ψ̄α̃1 Γ̃

α̃1...α̃3∇α̃2ψα̃3

− 1

96

(

ψ̄α̃5 Γ̃
α̃1...α̃6ψα̃6 + 12ψ̄α̃1 Γ̃α̃2α̃3ψα̃4

)

Fα̃1...α̃4

)

,

if we firstly split the summations α̃ = 0, . . . , 10 into α = 0, . . . , 3 and a = 4, . . . , 10, secondly

use the decomposition of Γ̃-matrices (6.23), thirdly substitute χ for ψ (6.22), (6.24), fourthly

drop all derivatives ∂
∂xα with α = 0, . . . , 3 and finally use the simplifying assumptions (5.21)

for the vielbein E in eleven dimensions (5.20). This completes the proof that a hidden

symmetry Diff(7) also appears in the fermionic dynamics, if the Weyl rescaling of the

additional four dimensions (5.20) is taken into account.

7 Exceptional geometry

The hidden Diff(7)-symmetry of the bosonic and the fermionic dynamics in sections 5.5

and 6.6 respectively provided evidence that adding four dimensions to the 56 dimensional

generalized coset dynamics may result in an interesting structure. In this section, the

generalized coset picture will be completed with the bosonic fields that are naturally linked

to the additional four dimensions following the discussion of section 6.3. We will conclude

with the geometric interpretation and comments on the literature.

7.1 A glance at the complete theory

Up to now, we have only motivated the Minkowskian signature for the additional four

dimensions by a comparison with D = 11 supergravity. However, this also is preferred from

a pure group theoretical point of view, if we require the dimension of the supersymmetry

parameter ǫ to be minimal.

This is due to the fact that for the other two independent signatures (+ + ++) and

(++−−), there either is no Majorana representation of the Clifford matrices γα in R
4×4, or

γ5 (6.15) would square to +1l4 implying that the real matrix γ5 would not provide a complex

structure (6.17). Therefore, the minimal real dimension of the non-trivial representation

space of both Spin(4) × SU(8) and Spin(2, 2) × SU(8) would be 4R × 2 · 8R > 32R, which
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would be in contradiction to the maximality of d = 4 N = 8 supergravity. The Minkowskian

choice for the signature then leads to the coset (6.12)

V ∈ G/
(

SO(3, 1) × SU(8)/Z2

)

(7.1)

of the group G =
(

Gl(4) ×E7(7)

)

⋉ N(4, 56) (6.11), whose matrix representation as 60 × 60

matrices is (4.19):

(

Gl(4) ∗4x56

0 E7(7)

)

As explained in section 6.3, the vierbein eµ
α parametrizes the coset Gl(4)/SO(3, 1).

The Gl(4) × Gl(7)-decomposition of the 4R × 56R additional off-shell degrees of freedom

in the coset V (7.1) suggests an identification with the following supergravity fields:

1. 4 × 7-part Bµ
a of the vielbein E (2.8),

2. 4 × 21-part Aµab of the three-form potential A (2.4),

3. 4 × 21-part Ãµa1...a5 of the dual six-form potential Ã (2.6b)

4. and an additional field Cµ
a.

The duality relation (2.6a) guarantees that the three- and the six-form potentials Aµab and

Ãµa1...a5 are independent variables in a Lagrangian, but what is the counterpart of Cµ
a in

D = 11 supergravity?

In a Kaluza-Klein reduction of the complete generalized coset dynamics in sixty di-

mensions down to eleven dimensions, the 4 × 7 degrees of freedom of Cµ
a apparently rule

out an off-shell Diff(11)-covariance. It is however not unlikely that Diff(11) is an on-shell

symmetry of the reduced theory. This possibility is backed up by the similar properties of

the generalized coset dynamics and D = 11 supergravity: Apart from their identical dy-

namics and supersymmetry variations in the seven dimensional sector, which was discussed

in this article, both theories exhibit a global on-shell E7(7)-invariance upon a Kaluza-Klein

reduction to four dimensions. The unique way to settle this issue appears to be a compar-

ison of the complete generalized coset dynamics to D = 11 supergravity, which is beyond

the scope of the present article, however.

7.2 Geometric interpretation

At the end of section 3, we explained that an “exceptional geometry” would be necessary

to consistently define the theory on more general spaces than the vector space R
56 ⊕R

4 of

section 4.2.3. A first example of such a constrained geometry was provided by symplectic

geometry in section 4.2.2: It is consistent (though not general) to assume that the vielbein

V on a symplectic manifold (M2n,Ω) is parametrized by the degrees of freedom of the

coset Sp(2n)/U(n).

Let us discuss this example in more detail. It is well known that any symplectic

manifold (M2n,Ω) has a Lagrangian submanifold Mn
L of dimension n [21]. Furthermore,
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the cotangent bundle over the Lagrangian submanifold T ∗Mn
L is diffeomorphic to an open

neighbourhood of the Lagrangian submanifold Mn
L in (M2n,Ω). Therefore, it is clear that

from a local point of view, the vielbein V ∈ Sp(2n)/U(n) or the corresponding metric

g (4.16) can equivalently be defined on the 2n-dimensional cotangent bundle T ∗Mn
L, i.e.

for every x ∈ Mn
L and v ∈ T ∗

xMn
L, g is the mapping

g(x, v) : T(x,v) (T ∗
xMn

L) ⊗ T(x,v) (T ∗
xMn

L) −→ R. (7.2)

This is the setting that we want to generalize. Instead of the cotangent bundle T ∗Mn
L

over the Lagrangian submanifold, consider a vector bundle E over a four dimensional ma-

nifold M4 with 56 dimensional fibre Ex for any x ∈ M4 and with the canonical projection

π : E −→ M4. (7.3)

Furthermore, endow this vector bundle E with an E7(7)-structure. For every x ∈ M4,

this effectively reduces the group Gl(56) of endomorphisms

ϕx : Ex −→ Ex

to E7(7) [16].18 Next, we define a metric for every x ∈ M4 and v ∈ Ex by the non-degenerate

symmetric mapping

g(x, v) : T(x,v)E ⊗ T(x,v)E −→ R. (7.4)

As for the symplectic case, we want to make use of the geometric structure to con-

sistently reduce the off-shell degrees of freedom of the associated vielbein V (2.2), (4.16).

Due to the E7(7)-structure of E, the vector bundle morphisms ϕ : E → E do not violate

the following restriction on the vielbein V, presented in its representation R as a 60 × 60

matrix (4.19):

R(V) ∈
(

Gl(4) ∗4x56

0 E7(7)

)

.

This exactly is the ansatz used for the generalized coset dynamics in the sec-

tions 4.2.3, 6.3 and 7.1. Finally, the signature of the metric g (7.4) is fixed to be Minkowk-

sian, as well as the one of its canonical restriction to TxM4 ⊗ TxM4. This completes the

geometric setting for the generalized coset dynamics of section 5.

The fermions χ and ǫ can also be encoded in the geometrical picture. They parametrize

sections of vector bundles over the sixty dimensional manifold E (7.3). A general vector

bundle morphism ϕ : E → E respecting the E7(7) structure induces a Spin(3, 1) × SU(8)

action on χ and ǫ in complete analogy to the standard Spin(3, 1)-action on the spin bundle

induced by a coordinate transformation Diff(4) in general relativity [14].

18An equivalent way to restrict the morphisms ϕ : E → E is to require that the maps ϕx : Ex → Ex

preserve a symplectic form Ω and the quartic symmetric tensor Q which is the invariant tensor of E7(7) [14].
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7.3 Exceptional geometry and comments on the literature

The idea to add more dimensions to D = 11 supergravity has been discussed before. To

our knowledge, the number 60 appeared for the first time in de Wit & Nicolai’s review

as a conjecture for a “BPS-extended supergravity” [29]. In analogy to the discussion

of the E8(8)-case [20], they baptized the underlying hypothetical geometrical structure

exceptional geometry .

Since the generalized coset dynamics in sixty dimensions with hidden Diff(7) sym-

metry perfectly agrees with D = 11 supergravity for the comparable fields so far, we

will henceforth adopt this name and define the dynamics of exceptional geometry to be

described by the extensions of the Lagrangians of the sections 5.4 and 6.6 to the entire

sixty dimensional setting.

Before concluding, we would like to emphasize the difference of the present exceptional

geometry to Hull’s definition of an “M-geometry on a seven dimensional manifold H” [15]

or Pacheco & Waldram’s “exceptional generalized geometry” (EGG) [24] à la Hitchin. All

settings contain a vector bundle with structure group E7(7), but the base manifold is of

different dimension. In particular, “M-geometries”, EGGs and “U-folds” by definition [15,

24] possess a manifest diffeomorphism symmetry Diff(7) ⊂ Diff(11) in contradistinction to

the exceptional geometry in sixty dimensions, whose hidden symmetry Diff(7) only appears

in a truncation to eleven dimensions. However, it would be interesting to check whether

these constructions are related.

8 Conclusion and outlook

The logic of this paper has been the following:

1. In section 5, we have applied the generalized coset dynamics of section 4 to the Lie

group G = E7(7). It turns out that there is a Lagrangian depending on 56 dimensions

whose Kaluza-Klein reduction to seven dimensions can be made Diff(7)-covariant,

if and only if d = 4 additional dimensions are coupled to the system in the sense

explained in section 5.5. A first comparison with the bosonic part of the Lagrangian

of D = 11 supergravity in section 5.6 shows perfect agreement for the fields under

consideration.

2. The section 6 discussed the possibility of an E7(7)-covariant variation δ on the

coset degrees of freedom V ∈ E7(7)/(SU(8)/Z2) which results in the definition of

the fermions χABC (6.5). To lowest order in derivatives and fermions, δχ was

uniquely fixed by requiring the hidden Diff(7)-covariance of the bosonic part to

persist. The same is true for the fermionic dynamics, if the Weyl rescaling of the

additional four dimensions is taken into account again. A second comparison with

the supersymmetry variation of D = 11 supergravity and its fermionic Lagrangian

also shows perfect agreement, even if the degrees of freedom of the gravitino ψα with

α = 0, . . . , 3 are included.

3. Section 7 finally provided a glance at the complete theory in sixty dimensions and

its geometrical interpretation in terms of an exceptional geometry.
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The agreement with D = 11 supergravity in the compared sector together with the ma-

nifest E7(7)-invariance of sixty dimensional exceptional geometry leads to the suspicion

that its equations of motion could be preserved under the 32R dimensional supersymme-

try variation δ of section 6. Hence, its truncation to four dimensions would immediately

provide a Lagrangian formulation of N = 8 d = 4 supergravity with manifest, off-shell

E7(7)-invariance. This would also be a strong argument in favour of a hidden symmmetry

Diff(11) of the sixty dimensional exceptional geometry in a truncation to eleven dimensions

as discussed in section 7.1.

Following the same line of argumentation, it would then also be likely that Diff(10) ×
Sl(2) is a hidden symmetry of exceptional geometry and that the dynamics of IIB super-

gravity are contained in the ones of exceptional geometry, too. This possibility is linked

to the observation that not all Gl subgroups of E7(7) are contained in its Gl(7) subgroup.

This is in particular the case for Gl(6) × Sl(2).

We want to emphasize that the closure of the supersymmetry algebra has not been used

for the construction of the dynamics in this article. Nevertheless, it is an important task

to check the on-shell consistency of the supersymmetry algebra in the sixty dimensional

exceptional geometry. Note however that the complete dynamics of exceptional geometry

will have to be established in order to be able to decide this question.

If the agreement of D = 11 supergravity with a truncation of exceptional geometry is

complete, then the rich symmetry structure of the former requires an explanation. The first

example would be the hidden E8(8) symmetry of the truncated D = 11 supergravity, which

could either be related to the conformal realization of E8(8) [13] on the 3 + 57 dimensional

exceptional geometry or to a generalized coset dynamics in 3 + 248 dimensions. The

latter would suggest an immediate extension to West’s l1-representation [27]. Hence, this

construction will probably provide further insights in the dynamics of the E10(10)- and

E11(11)-conjectures [9, 26]. These additional structures may also fix the other numerical

factors in the Lagrangian of exceptional geometry in section 6.6, which have been chosen

so far in order to match the dynamics of D = 11 supergravity.

Finally, exceptional geometry confirms the well known statement that the link between

diffeomorphism-, exceptional- and supersymmetry is very tight. Therefore, exceptional

geometry may possibly serve as a selection criterion for (hypothetical) supersymmetric

higher curvature extensions of d = 4 N = 8 supergravity.
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